LENR Low Energy Nuclear Reactions aka COLD FUSION

Introducing the Energy Catalyzer (E-Cat) Futuristic Technology For The 21st Century

By Roger Green - www.Ecat.tech
In conjunction with
A Rossi - Leonardo Corp

What is LENR and E CAT?

- LENR: Low Energy Nuclear Reaction aka COLD FUSION
- E CAT Uses small amounts of Ni and H2 (milligrams, with catalysts)
- Low cost, simple and sustainable way to produce large amounts of heat, steam and convert to power.
- Eliminates hydrocarbons no emissions or waste.
- Extremely high energy density: 2000X diesel fuel.
- Modular, scalable and easily mass produced.
- Unlimited applications industrial, power stations, third world communities
- Considered the "Holy Grail" of the energy world!

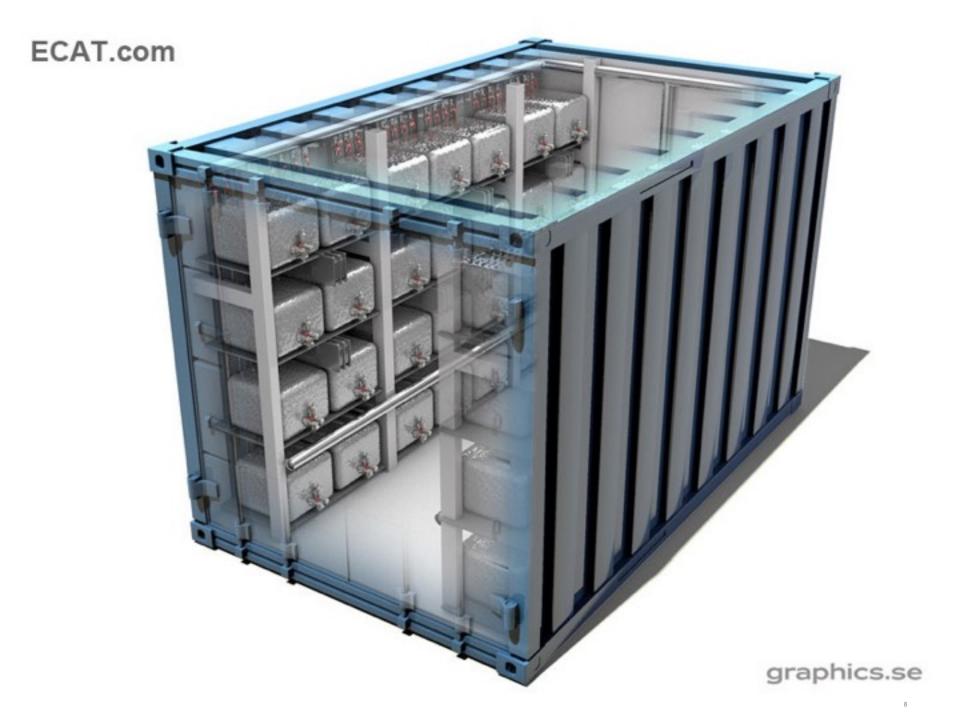
What is LENR and E CAT?

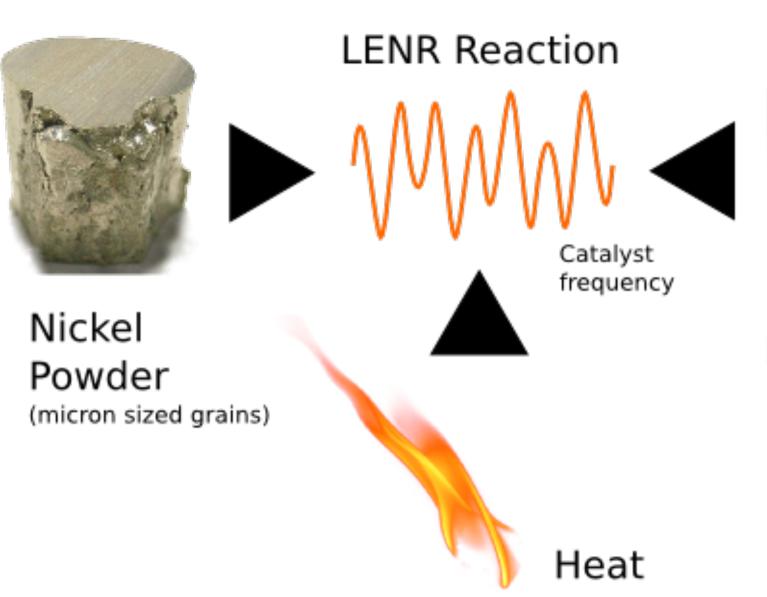
- No production of radioactive waste, and generated weak gamma rays can easily be shielded.
- Generates a large amount of heat energy when small amounts of hydrogen, special nickel powder and an undisclosed material are combined(catalyst-with-frequencies)
- About 1 percent of the annual world nickel production is sufficient to provide the energy needs of mankind.

LENR Theory

- The theory states that once some energy is added to surfaces loaded with protons, if the surface morphology enables high localized potential gradients, then heavy electrons (muons) leading to ultra low energy (cold) neutrons will form that never leave the surface.
- The neutrons set up isotope cascades which result in beta decay and gamma emission. This results in interactions with heavy electrons which convert the gamma into heat.

What is E CAT?


- The first-generation 1 MW power plants "WARM CATS"
 - generate heat energy in form of hot water with a temperature up to 120 °C. They are appropriate for industrial heating and cooling applications.
- The "HOT ECAT", generates heat energy in form of hot water with a temperature above 700 °C.
 - It is appropriate for electrical generation
 - Its COP is 6 or higher

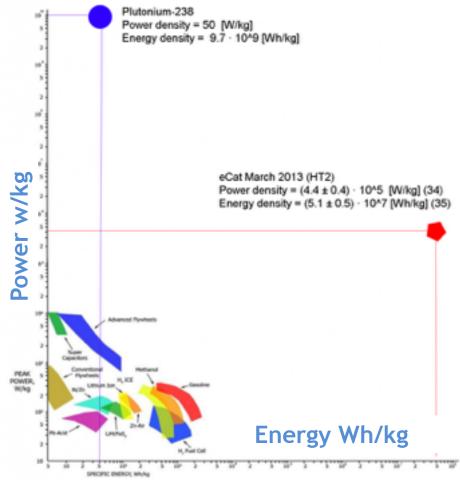

COP 6.0 (Coefficient of Performance) What Does it Mean?

- The COP represents the net useful energy output, over and above the energy input
- 1000 kwh (1 MWH) divided by 6= 167 Kw.
- If used as a heater only, the net COP remains 6.
- If the heat is used to run a turbine, then:
 - If the turbine is conventional, the efficiency is approx 40%. If it is a Tesla turbine, then it is 60-80%.
 - If the turbine is coupled to a conventional alternator, that efficiency is approx. 80-90%.
 - Conventional turbine with alternator is 32% (0.4 x 0.8).
- To obtain 167 KWH for the loopback, we must consume 521 KWH, leaving the NET COP 1.92 using conventional turbine / generator

Generation of Electricity with E-cats

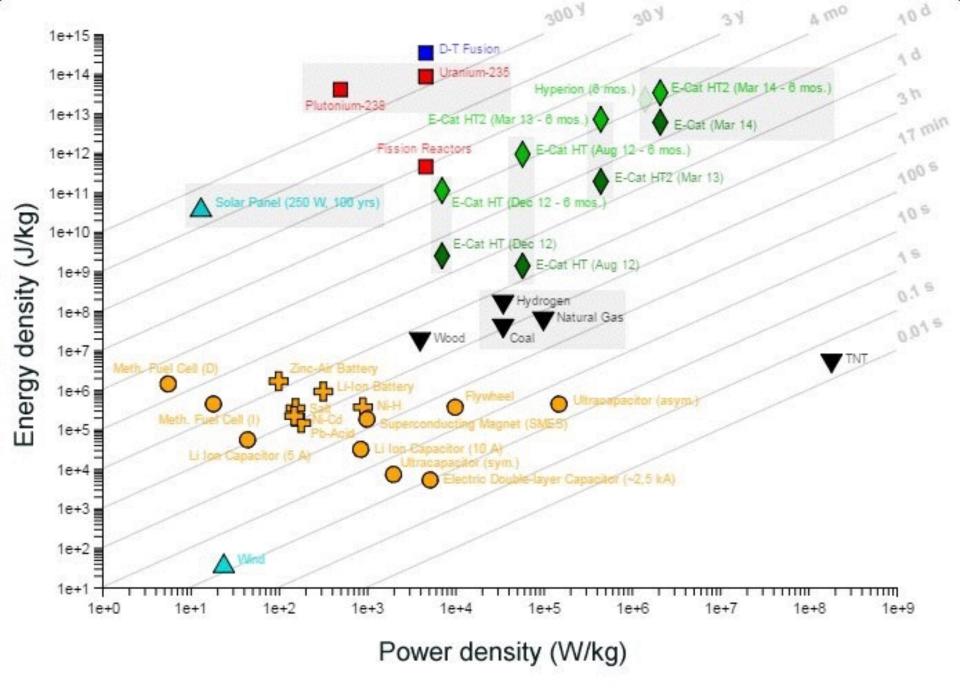
- On-site Power Generation
- Small, Distributed Power Generation Systems
- 1 MW scalable Ecat Units
- Large Power Stations: replace fossil fuel (retrofitting?)
- Emerging Tesla Turbine possible increase in efficiency
- Siemens SST-700 turbine, uses steam at up to 585 °C



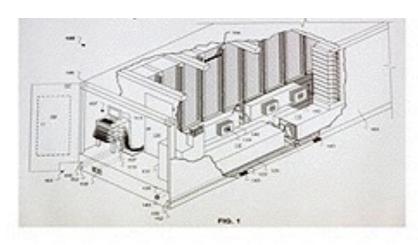


Hydrogen

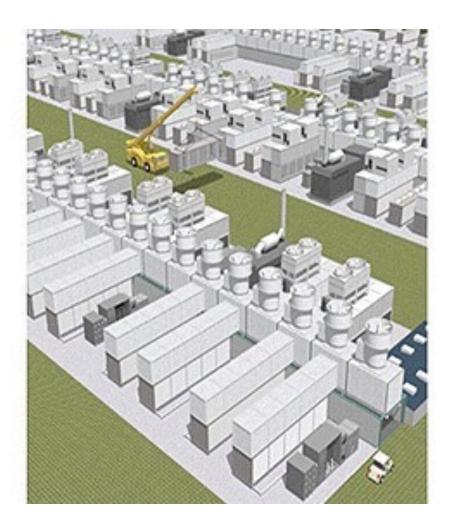
Third party independent report released Oct 2014 Reactor ran for 32 days non stop and reached-1400 C-Overseen by four 4 top scientist-the report was downloaded by approx 200,000

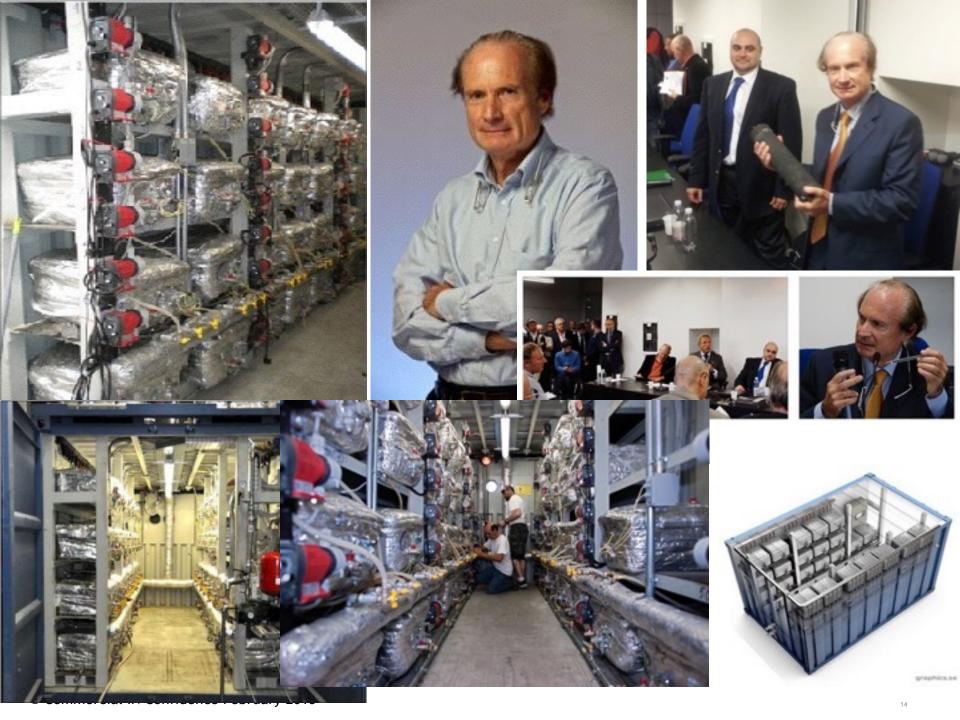


Energy Density Comparisons

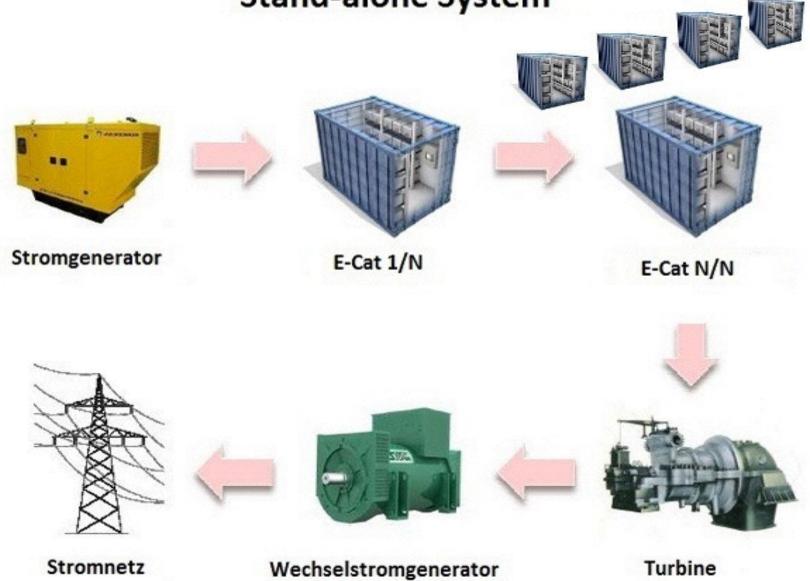


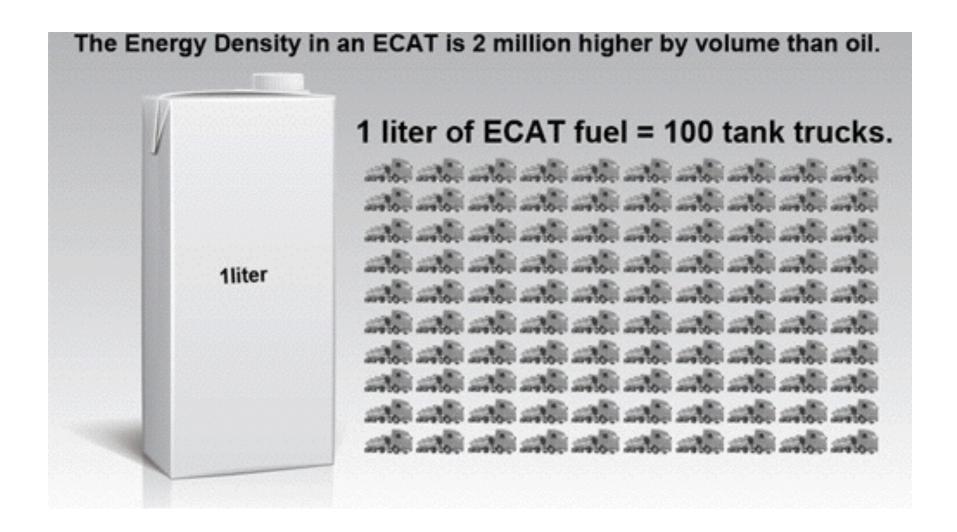
"Indication of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder", Levi et al. http://arxiv.org/ftp/arxiv/papers/1305/1305.3913.pdf


Fig 9 expanded to show the Ragone plot of Pu-238 and the eCat test, March 2013.



Ecat Power Stations





Stand-alone System

© Cor....., ___, __

16

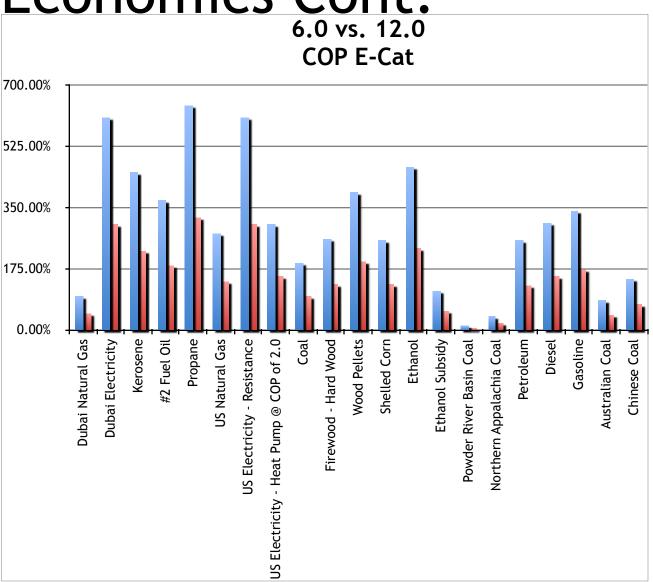
"WARM_ECAT" -1MW Technical Data

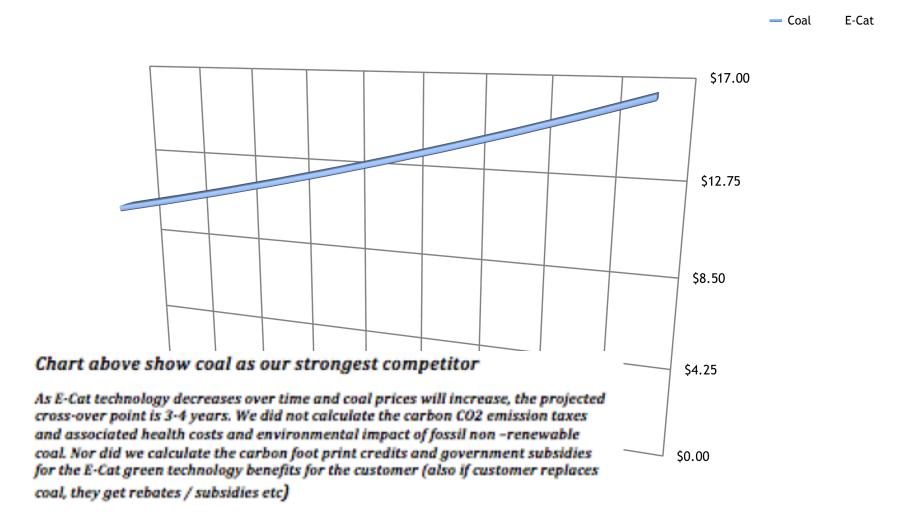
All data provided below may be subject to change due to the ECATs' development. Technical specifications will be continuously be updated when changes are made.

Steam Production	Hot Water Production
1 MW	1 MW
200 kW	200 kW
167 kW	167 kW
6	6
20 kW-1 MW	20 kW-1 MW
104	104
10kW	10kW
Various	Various
4 Bar	4 Bar
1500 kg/hr	9000 kg/hr
300-1500 kg/hr	1000-9000 kg/hr
4-85 C	4-85 C
100-120 C	50-99 C
National Instruments	National Instruments
\$1/MWhr	\$1/MWhr
Included in O&M	Included in O&M
2/year	2/year
2 years	2 years
30 years	30 years
USD\$1.5M	USD\$1.5M
2.4×2.6x8m (approx)	2.4×2.6x8m (approx)
	1 MW 200 kW 167 kW 6 20 kW-1 MW 104 10kW Various 4 Bar 1500 kg/hr 300-1500 kg/hr 4-85 C 100-120 C National Instruments \$1/MWhr Included in O&M 2/year 2 years 30 years USD\$1.5M

LENR Competitive Advantage

- Self Running Sustained output 1-20 MW
- Safe Simple Low cost Easy to operate.
- Long life -Easy to integrate and maintain.
- Parity with Coal Generation with NO Emissions!
- Runs off grid in any location!
- Huge savings over natural gas and oil!
- Projected Power Cost: 2-4 cents per KWH.
- Projected Heat Cost: 0.3-1.0 cents per KWHT.


Economics - Market Size


- Total world energy market is \$5 trillion annual
- Target addressable LENR markets are enormous!
- Markets like desalination range from \$200-500 Billion
- World market of distributed energy supply projected to be \$155B by 2030
- LENR system cost: very competitive with current technologies. Rapid ROI and savings.
- Birth of new trillion dollar growth industry & many jobs!

Possible Future Developments

- Use high efficiency power conversion: Tesla turbine & alternator or quantum well device.
- Tesla turbine with alternator has a net efficiency of 64%. This means a loop back of 261 KWH, and a net COP of 3.84.
- However, if the unit runs in self-sustain mode, then there is no loopback, and conventional turbines and alternators can be used.

OPERATIONAL & MAINTENANCE COST E-CAT TECHNOLOGY

1 MW industrial unit:

Cost Estimates of Rossi E-Cat

Type of Nickel: IP Process

Number of Cells per Installation for 1 MW: 106

Nickel consumed per MW/h (Grams): 0.50

Cost of Nickel per gram: \$0.80

Cost per MW/hr: \$36.34

Cost per KW/hr: \$0.036

Cost per day: \$872.23

Cost per year: \$318,580.50

Note: Costs above are for heat Generation ONLY!

Possible Conversions; heat to electricity assumptions:

Cost of power generation KW/hr. @ 33% Eff.

For conventional turbine power plant: \$0.108

Cost of power generation KW/hr. @ 10% Eff.

For thermoelectric power conversion: \$0.363

Replacement cost per unit: \$10.00

Total cost of 106 units: \$1,060.00

Recharge Frequency 2/. Yr.: \$2,120.00

Total Cost over 20-year period: \$42,400.00

© Commercial IN Confidence February 2015

÷

Description - material	Unit	Rate - USD	per !	red for WWh sutput	Cost per day (24Hrs) of MW Heat output	year (8766Hrs) of MW Heat output	Remarks	
Electricity input COP 6:1	\$0.11	Per XW	3.33		\$440.00	\$160,710.00	This is based on cheap Dubai Tariff, with a COP of 6.	
Water Calculations Sydney Water Price	\$0.03	Per Liter	5.2	liter	\$0.16	\$1,367.00	Cost per Year @ Standard Boiler leakage Rates NOT an e-cat expense	
Operation & Maintenance per Published Specs	\$0.50	Per MWb.	\$0.50	USD	\$12.00	\$4,383.00	Per Published Specs.	
Recharge Cost	\$10.00	Per module	0.24	USD	\$5.80	\$2,120.00	Per Published Specs.	
Hydrogen	5	Liters				\$1.00	Very small amount- not even in the equation	
Actual Variable Cost						\$168,580.50		
Capital Cost		Million				\$150,000.00	Amortized at 1MW per hour for 8766 hours per year for 10 years.	
Variable & Amortized Capital Cost for 10 year operation		Million				\$318,580.50	Actual per day cost including amortization	
Variable & Amortized Capital Cost over 20 years Operation	1.5	Million			\$436.11	\$159,290.25	Actual Per day cost including Amortization	
								24

		E-Cat Cost Comparison			
	E-Cat	Dubai Electricity	Kerosene	#2 Fuel Oil	Propane
Price Per Million BTUs	\$10.65	\$32.24	\$23.97	\$19.73	\$34.04
Price Per Megawatt Hr.	\$36.35	\$110.04	\$81.81	\$67.34	\$116.18
Cost Per Day	\$872.36	\$2,640.84	\$1,963.43	\$1,616.12	\$2,788.28
Cost Per Month	\$26,170.88	\$79,225.29	\$58,902.92	\$48,483.71	\$83,648.53
Cost Per Year	\$318,630.51	\$964,567.86	\$717,143.04	\$590,289.20	\$1,018,420.91
Cost For 10 Yrs Op.	\$3,186,305.13	\$9,645,678.62	\$7,171,430.41	\$5,902,892.03	\$10,184,209.06
Cost For 20 Yrs Op.	\$6,372,610.25	\$19,291,357.24	\$14,342,860.83	\$11,805,784.07	\$20,368,418.13

Ratio of Blectricity input cost vs. Net Cost:	3.979513836					
				% of E-Cat	% of	Cost Per
Cost					E-Cat	1HW
Comparisons:	Cost	BTU	Per KW	COP 6.0	COP 12.0	Plant
Dubai Natural Gas	\$5.00	1000000	\$0.0171	46.96%	93.91%	\$206.61
Dubai Blectricity	\$0.11		\$0.1100	302.67%	605.35%	\$1,331.77
Kerosene	\$23.97	1000000	\$0.0818	225.11%	450.21%	\$990.47
#2 Fuel Oil	\$19.73	1000000	\$0.0673	185.29%	370.57%	\$815.26
Propane	\$34.04	1000000	\$0.1162	319.67%	639.35%	\$1,406.57
US Natural Gas	\$14.71	1000000	\$0.0502	138.14%	276.29%	\$607.83
US Electricity - Resistance	\$32.24	1000000	\$0.1100	302.77%	605.54%	\$1,332.19
US Electricity - Heat Pump © COP of 2.0	\$16.12	1000000	\$0.0550	151.39%	302.77%	\$666.10
Coal	\$10.18	1000000	\$0.0347	95.60%	191.20%	\$420.65
Firewood - Hard Wood	\$13.89	1000000	\$0.0474	130.44%	260.89%	\$573.95
Wood Pellets	\$20.96	1000000	\$0.0715	196.84%	393.68%	\$866.09
Shelled Corn	\$13.66	1000000	\$0.0466	128.28%	256.57%	\$564.45
Ethanol	\$24.74	1000000	\$0.0844	232.34%	464.67%	\$1,022.28
Ethanol Subsidy	\$5.92	1000000	\$0.0202	55.60%	111.19%	\$244.62
Powder River Basin Coal	\$0.56	1000000	\$0.0019	5.26%	10.52%	\$23.14
Northern Appalachia Coal	\$2.08	1000000	\$0.0071	19.53%	39.07%	\$85.95
Petroleum	\$13.56	1000000	\$0.0463	127.34%	254.69%	\$560.31
Diesel	\$16.21	1000000	\$0.0553	152.23%	304.46%	\$669.81
Gasoline	\$18.16	1000000	\$0.0620	170.54%	341.09%	\$750.39
Australian Coal	\$4.45	1000000	\$0.0152	41.79%	83.58%	\$183.88
Chinese Coal	\$7.82	1000000	\$0.0267	73.44%	146.88%	\$323.13
						25

	US Natural Gas	US Electricity - Resistance	US Electricity - Heat Pump © COP 2.0	Firewood - Hard Wood	Wood Pellets	Ethanol
Price Per Million BTUs	\$14.71	\$32.24	\$16.12	\$13.89	\$20.96	\$24.74
Price Per Megawatt Hr.	\$50.21	\$110.04	\$55.02	\$47.41	\$71.54	\$84.44
Cost Per Day	\$1,204.93	\$2,640.84	\$1,320.42	\$1,137.76	\$1,716.88	\$2,026.50
Cost Per Month	\$35,147.77	\$79,225.29	\$39,612.64	\$34,132.73	\$51,506.27	\$60,795.09
Cost Per Year	\$440,099.05	\$964,567.86	\$482,283.93	\$415,565.99	\$627,088.78	\$740,180.18
Cost For 10 Yrs Op.	\$4,400,990.46	\$9,645,678.62	\$4,822,839.31	\$4,155,659.93	\$6,270,887.84	\$7,401,801.77
Cost For 20 Yrs Op.	\$8,801,980.92	\$19,291,357.24	\$9,645,678.62	\$8,311,319.85	\$12,541,775.67	\$14,803,603.54

Andrea Rossi-Roger Green

Who we are

Director: Andrea Rossi

- Inventor of the E-Cat, and strong proponent of renewable energy
- He has been active for many decades in various renewable energy systems.
- CEO of Leonardo Corporation USA

Director: Roger G. Green

- Mr. Roger Green, a New Zealander, is an international businessman based in New York and Sydney Australia and
 has been active in the promotion of the E cat Technology worldwide. His company Eco Global Fuels holds
 several E cat licenses in the South East Asia, including a JV partnership with E cat Africa, Ecat India and a JV
 partnership with E cat Japan
- He has been active for over 25 years in environmental, eco-design and emerging green energy initiatives around the world. He is the founder and director of the Breakthru-Technologies Company, which has sponsored several international conferences and is financing many innovative inventions, including R & D utilizing the E cat technology for desalination, electrical generation and transportation.
- Ecat Africa Limited is registered in Seychelles
- Ecat India www.EcatSouthAsia.com
- Ecat Japan is registered in Singapore
- Ecat Spain is registered in Madras, Spain
- Ecat license for Korea and South East Asia
- Ecat Agent for Australia, Indonesia and New Zealand
- · Roger Green contact: ecoglobalfuels@gmail.com

More about Roger Green

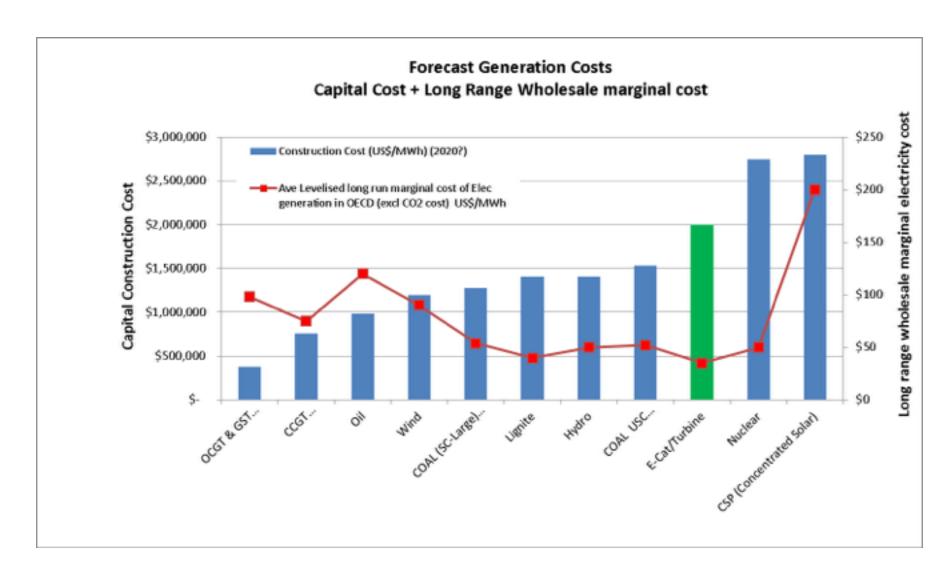
- Early seed investor
- South East Asia including Korea
- Partners with Japan license (majority-Green)
- Partners with Melbourne Banker Roy Wise-Indian-Subcontinent (South Asia)
- Partners in African continent
- Partners in Spain and Portugal
- www.Ecat.tech

Conclusions

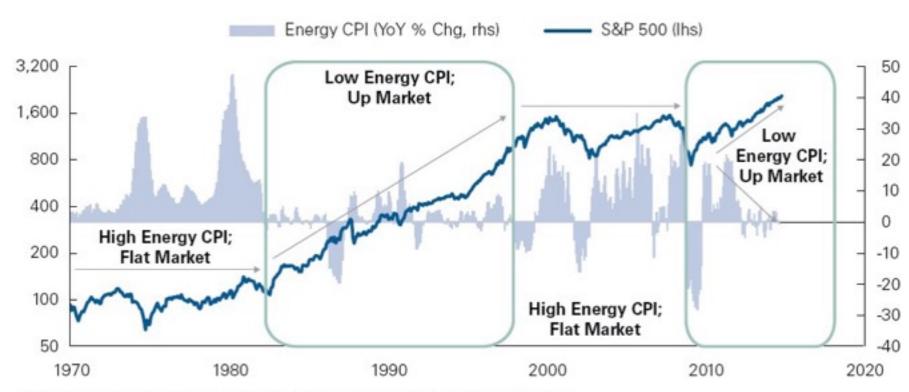
- E-Cat is economically viable over the long run.
- It is a "green" technology that improves the environment, as opposed to coal.
- Zero carbon footprint in operation
- Can be used for process heating, with the potential to be a viable replacement for coal & oil.
- Reserves of nickel are well known, and most are not in conflict areas, as opposed to uranium.
- Is intrinsically safe, and any internal runaway reactions are self-extinguishing—far more safe than conventional fission plants such as Fukushima.

NEXT_STEP

- FIND STRAGETIC PARTNERS
- BUILD ECAT_POWER PLANTS
- NO RISK INVOLVED
- DEMO-1MW unit in 6-8 months
- Producing statistics and performance data
- Begin with min. investment of 1 MW HOT bolted onto turbine and generator
- 1.5 M plus turbine and generator (3-4 M)
- Start in secure locations
- Import 1MW to secure local safety certificates

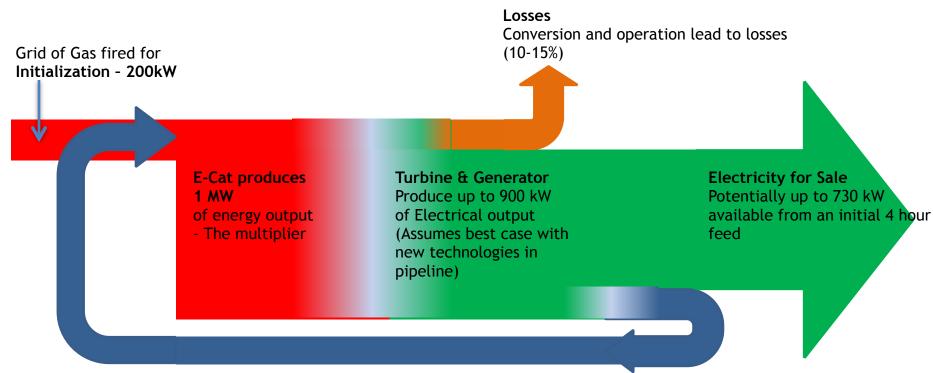

NEXT_STEP

- Begin negotiations now-strategic partners
- Sign contracts after complete validations of working 1MW prototype
- Huge growth potential for original strategic partner (first options to increase value)
- Min. infrastructure required


So what is the State of the Nation?

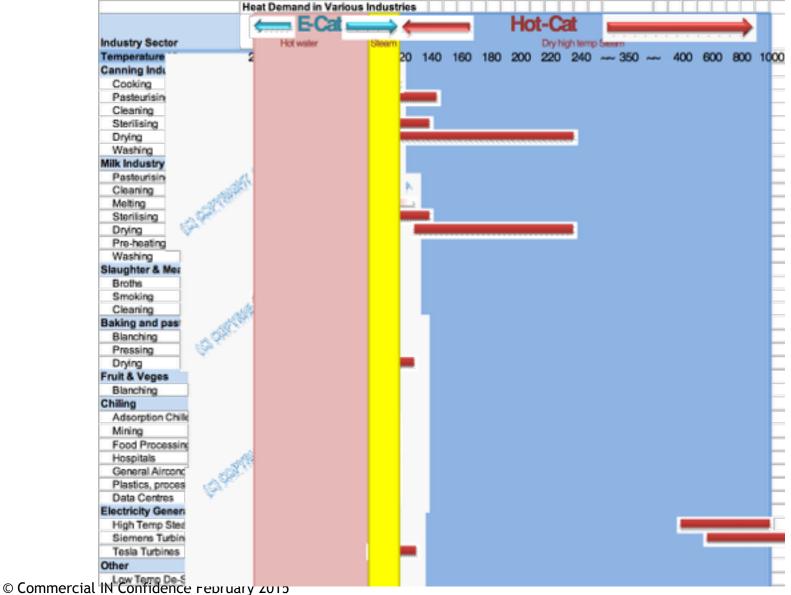
- Wind farms and Solar are capital intensive, but relatively easy to do, and reliable to run with lower operating costs. Input energy is virtually free (wind/sun)
 - Total cost per MW is Medium and getting cheaper
- Hydrocarbon sources are reliable, solid suppliers. Politically jaundiced.
 - Low cost of inputs, moderate capital cost, large outputs, but also high maintenance costs. Source fuel is good for long term supply.
 - Total cost per MW is low

Cost compared to Existing Technologies



Market - Energy demand expected to increase

Source: Cornerstone Macro, Portfolio Strategy, data through November 28, 2014


Overall Energy Balance

Loopback

E-Cat only requires 170kW to maintain the reaction. Given electricity generation, the loopback provides that sustain power

Process Industries/warm Cat

Contact

- Roger Green
- ecoglobalfuels@earthlink.net
- www.Ecat.tech
- www.EcatSouthAsia.com
- www.Breakthru-technologies.com